## Ketamine for Treatment Resistant Depression: From Research to Clinical Practice

Rayan K. Al Jurdi, MD Brain Health Consultants Co-founder Clinical Associate Professor Menninger Department of Psychiatry & Behavioral Sciences Baylor College of Medicine

#### Disclosure:

• Research Contracts: Janssen Pharmaceuticals, Inc., NeoSync, Inc.

 Treatment-Resistant Depression (TRD) Speaker Bureau, Janssen Pharmaceuticals, Inc.

#### **Objectives:**

- Unmet needs of Treatment Resistant Depression (TRD)
- Discuss efficacy data of ketamine for TRD
- Review of efficacy and safety data of Spravato (esketamine) for TRD and its use in clinical practice
- ketamine suggested mechanism of action

#### MDD is a Serious Disease with Far-Reaching Impact

- Global health problem, >300 million worldwide,<sup>1</sup> >17 million in US<sup>2</sup>
  - Almost 50% of patients suffer from treatment resistant depression (TRD) defined as: *inadequate response to at least 2 antidepressants of adequate* <u>dose and duration<sup>4</sup></u>
  - 65% report a significant inability to function in life<sup>2</sup>
  - Major cause of disability in US<sup>2</sup> and worldwide<sup>5</sup>
- MDD increases the risk for other physical and psychiatric illnesses<sup>6</sup>
  - MDD worsens the outcomes of other general medical and mental conditions
  - 10-year reduction in life-expectancy<sup>7</sup>

<sup>1.</sup> WHO News Release 30 Mar 2017; 2. NIMH Mental Health Website release November 2017; 3. Rush AJ et al. Am J Psychiatry . 2006;163(11):1905-1917; 4. Agency for Healthcare Research and Quality. https://www.cms.gov/Medicare/Coverage/DeterminationProcess/downloads/id105TA.pdf; 5. Global Burden of Disease 2010; 6. Taksler GB et al. Am J Public Health. 2017;107(10):1653–1659; 7. Walker ER, McGee RE, Druss BG. JAMA Psychiatry. 2015;72:334-341.

#### Consequences of TRD as Compared to MDD

More comorbidities

(e.g., hypertension, diabetes, hear failure)<sup>1</sup>

2x Hospitalization rate<sup>2</sup> 36% longer mean hospital length of stay<sup>2</sup>

7-fold Increase in suicide rate<sup>3</sup>

1. Amos T, Witt, EA, Alphs L, et al. Poster Presented at: 29th Annual US Psychiatric & Mental Health Congress, October 21-24, 2016; San Antonio, Texas;

2. Amos TB, Tandon N, Lefebvre P, et al. (2018). J Clin Psychiatry;

3. Feldman RL, Dunner DL, Muller JS, Stone DA (2012). J Med Econ.

#### Challenges with TRD:



Time to remission: 5-7 weeks

#### **Current Treatments Fail to Address Patient Needs**

#### • Current antidepressant offer<sup>1</sup>:

- slow onset of action
- suboptimal remission rates
- substandard relapse rates
- All current pharmacotherapies target the same mechanism of action
  - MDD/TRD likely a heterogeneous disease that goes beyond monoamines
- Only 1 pharmacotherapy (olanzapine/fluoxetine combination) approved for TRD<sup>2</sup>
  - Significant weight gain, movement disorder side effects<sup>3</sup>
- Only 1 somatic therapy (Transcranial Magnetic Stimulation) approved for TRD
  - Limited data on efficacy<sup>4</sup> and long-term benefit <sup>5</sup>
- Other treatments do not meet patient needs (e.g., Electroconvulsive therapy)
  - Anesthesia required, potential for severe side effects like memory loss

1. Moser G, Pink Sheet: Major Depressive Disorder Patients Emphasize Long-Term Nature of Disease In Feedback Meeting, 2018; 2. Sanacora G, et al. Neuropharmacology. 2012; 62(1):63-77; 3. Philip NS, et al. Expert Opin Pharmacother. 2010 Apr; 11(5): 709–722; 4. Work Group on Major Depressive Disorder, Gelenberg, AJ, Freeman, MP, et al. Practice Guideline for the Treatment of Patients With Major Depressive Disorder. 3rd. Washington, DC: American Psychiatric Association; 2010; 5. Ont Health Technol Assess Ser. 2016; 16(5): 1–66.

#### 2-(2-chlorophenyl)-2-(methylamino)cyclohexan-1-one

merican Journal

The Economist

AUGUST 19TH-25TH 201

'Repurposing" off-patent drugs offer big hopes of new treatments



THE ANTI

ANTIDEPRESSANT

Depression afflicts 300 million people. One-third don't respond to treatment.

> A surprising new drug may change that by Mandy Oaklander

Ketamine for Depression: The Most Important Advance in Field in 50 Years?

#### Single Ketamine Treatment and Depression

| Author               | Design | Dose                  | Control | Sample Size | Endpoint |
|----------------------|--------|-----------------------|---------|-------------|----------|
| Breman et al. (2000) | CO     | 0.5mg/kg X1 IV x 40mn | Placebo | 8           | 72 hours |
|                      |        |                       |         |             |          |
|                      |        |                       |         |             |          |
|                      |        |                       |         |             |          |
|                      |        |                       |         |             |          |
|                      |        |                       |         |             |          |
|                      |        |                       |         |             |          |
|                      |        |                       |         |             |          |

#### Mean Changes from Baseline in the HDRS



#### Single Ketamine Treatment and Depression

| Author                | Design | Dose                  | Control | Sample Size | Endpoint |
|-----------------------|--------|-----------------------|---------|-------------|----------|
| Breman et al. (2000)  | CO     | 0.5mg/kg X1 IV x 40mn | Placebo | 8           | 72 hours |
| Zarate et al. (2006)  | СО     | 0.5mg/kg X1 IV x 40mn | Placebo | 17          | 24 hours |
|                       |        |                       |         |             |          |
| Sos et al. (2013)     | СО     | 0.5mg/kg X1 IV x 30mn | Placebo | 27          | 24 hours |
|                       |        |                       |         |             |          |
| Lapidus et al. (2014) | CO     | 50mg IN X1            | Placebo | 18          | 24 hours |
|                       |        |                       |         |             |          |
|                       |        |                       |         |             |          |

#### Single Ketamine Infusion is Superior to Psychoactive Control in TRD: Baylor/Mt Sinai Study (N = 72)



Reduction in MADRS score 24 hours after infusion was the primary outcome measure and was significantly greater for the ketamine group than for the midazolam group ( $P \le .002$ ).

#### Single Infusion of Ketamine: Meta-analysis

| Α                        |        | Stati | stics for Each | Study          |         |      | Odds R  | atio and 95% Cl |    |
|--------------------------|--------|-------|----------------|----------------|---------|------|---------|-----------------|----|
|                          | Odds   | Lower | Upper          |                |         |      |         |                 |    |
| Study                    | ratio  | limit | limit          | <b>Z-Value</b> | p-Value |      |         |                 |    |
| Diazgranados et al. (85) | 26.053 | 1.359 | 499.339        | 2.164          | 0.030   |      |         |                 | -> |
| Lapidus et al. (84)      | 13.600 | 1.238 | 149.455        | 2.134          | 0.033   |      |         | •               | -  |
| Murrough et al. (87)     | 4.833  | 1.578 | 14.803         | 2.759          | 0.006   |      |         |                 |    |
| Sos et al. (91)          | 15.294 | 1.610 | 145.305        | 2.374          | 0.018   |      |         |                 | -  |
| Zarate et al. (88)       | 79.545 | 3.762 | 1681.833       | 2.811          | 0.005   |      |         |                 | -> |
| Zarate et al. (86)       | 22.176 | 1.133 | 434.158        | 2.042          | 0.041   |      |         |                 | -> |
|                          | 9.865  | 4.366 | 22.293         | 5.503          | 0.000   |      |         |                 |    |
|                          |        |       |                |                |         | 0.01 | 0.1     | 1 10            | 10 |
|                          |        |       |                |                |         |      | Control | Ketamine        |    |
| В                        |        | Stati | stics for Each | Study          |         |      | Odds R  | atio and 95% CI |    |
|                          | Odds   | Lower | Upper          |                |         |      |         |                 |    |
| Study                    | ratio  | limit | limit          | Z-Value        | p-Value |      |         |                 |    |
| Diazgranados et al. (85) | 5.000  | 0.426 | 58.636         | 1.281          | 0.200   |      |         | •               | -  |
| Lapidus et al. (84)      | 3.171  | 0.179 | 56.222         | 0.787          | 0.431   |      |         | •               | -  |
| Murrough et al. (87)     | 3.937  | 1.149 | 13.492         | 2.181          | 0.029   |      |         |                 |    |
| Sos et al. (91)          | 4.706  | 0.950 | 23.302         | 1.898          | 0.058   |      |         |                 |    |
| Zarate et al. (88)       | 19.783 | 1.060 | 369.109        | 1.999          | 0.046   |      |         |                 | -> |
| Zarate et al. (86)       | 3.222  | 0.176 | 58.849         | 0.789          | 0.430   |      |         | •               | _  |
|                          | 4 610  | 2 076 | 10 236         | 3.754          | 0.000   |      |         |                 |    |
|                          | 1.010  | 2.070 | 10.200         |                |         | 0.01 | 0.1     | 1 10            | 10 |
|                          |        |       |                |                |         |      | Control | Ketamine        |    |

#### Single Ketamine Treatment and Depression

| Author                 | Design   | Dose                          | Control   | Sample Size | Endpoint         |
|------------------------|----------|-------------------------------|-----------|-------------|------------------|
| Breman et al. (2000)   | СО       | 0.5mg/kg X1 IV x 40mn         | Placebo   | 8           | 72 hours         |
| Zarate et al. (2006)   | CO       | 0.5mg/kg X1 IV x 40mn         | Placebo   | 17          | 24 hours         |
| Murrough et al. (2013) | Parallel | 0.5mg/kg X1 x 40mn            | Midazolam | 73          | 24 hours         |
| Sos et al. (2013)      | СО       | 0.54mg/kg X1 IV x 30mn        | Placebo   | 27          | 24 hours         |
| Hu et al. (2014)       | Parallel | 0.5mg/kg X1 IV X 40mn         | Placebo   | 30          | Time to response |
| Lapidus et al. (2014)  | CO       | 50mg IN X1                    | Placebo   | 18          | 24 hours         |
| Su et al. (2017)       | Parallel | 0.2 or 0.5 mg/kg X1 IV x 40mn | Placebo   | 71          | 24 hours         |
|                        |          |                               |           |             |                  |

#### HAM-D-6 Scores Over First 72 Hours of Different Dosed Treatments



• midazolam 0.045 mg • ketamine

- midazolam 0.045 mg
  ketamine 0.1 mg/kg
- ketamine 0.2 mg/kg
  ketamine 0.5 mg/kg
- ketamine 1.0 mg/kg

### Multiple Ketamine Treatments and Depression

| Author                          | Sample Size | Frequency                    | Mean Time to<br>Relapse | Response Rate                | Remission Rate               |
|---------------------------------|-------------|------------------------------|-------------------------|------------------------------|------------------------------|
| Murrough JW,<br>et al. (2013)   | 24          | 3x per week                  | 18 days                 | 70.8%                        | Not reported                 |
| Shiroma PR, et<br>al. (2014)    | 14          | 3x per week                  | 16 days                 | 92%                          | 67%                          |
| Vande Voort JL<br>et al. (2016) | 12          | 3x per week                  | Not reported            | 58.3%                        | 41.7%                        |
| Singh JB, et al.<br>(2016)      | 67          | 2x per week &<br>3x per week | Not reported            | 2x/week: 69%<br>3x/week: 54% | 2x/week: 38%<br>3x/week: 23% |

### Esketamine (Spravato)

SPRAVATO<sup>™</sup> [prescribing information]. Titusville, NJ: Janssen Pharmaceuticals, Inc.

#### Esketamine Phase 3 Clinical Development Program in Treatment-Resistant Depression (TRD)

| Study                                                      | Design                          | n   | Duration (wk)    | Main endpoints          |
|------------------------------------------------------------|---------------------------------|-----|------------------|-------------------------|
| Acute, fixed dose study<br>(3001, TRANFORM-1) <sup>1</sup> | Double-blind, active controlled | 346 | 4-week induction | MADRS change at 4 weeks |
|                                                            |                                 |     |                  |                         |
|                                                            |                                 |     |                  |                         |
|                                                            |                                 |     |                  |                         |
|                                                            |                                 |     |                  |                         |

Fedgchin M, et al. Poster presented at: the 9th Biennial Conference of the International Society for Affective Disorders (ISAD); September 20-22, 2018; Houston, TX. 2. Popova V, et al. Poster presented at the 2018 Annual Meeting of the American Society of Clinical Psychopharmacology (ASCP); May 29-June 1, 2018; Miami FL. 3. Daly EJ, et al. Poster presented at the European College of Neuropsychopharmacology (ECNP) Congress; October 7, 2018; Barcelona, Spain.
 Wajs E, et al. Poster presented at the European College of Neuropsychopharmacology (ECNP) Congress; October 7, 2018; Barcelona, Spain.
 Wajs E, et al. Poster presented at the European College of Neuropsychopharmacology (ECNP) Congress; October 7, 2018; Barcelona, Spain. 5. Ochs-Ross R, et al. Poster presented at the 2018 Annual Meeting of the American Society of Clinical Psychopharmacology (ASCP); May 29-June 1, 2018; Miami FL.

#### Acute, fixed dose study (3001, TRANFORM-1)



Fedgchin M, et al. Poster presented at: the 9th Biennial Conference of the International Society for Affective Disorders (ISAD); September 20-22, 2018; Houston, TX

# Esketamine Phase 3 Clinical Development Program in Treatment-Resistant Depression (TRD)

| Study                                                          | Design                          | n   | Duration (wk)    | Main endpoints          |
|----------------------------------------------------------------|---------------------------------|-----|------------------|-------------------------|
| Acute, fixed dose study<br>(3001, TRANFORM-1) <sup>1</sup>     | Double-blind, active controlled | 346 | 4-week induction | MADRS change at 4 weeks |
| Acute, flexible dose study<br>(3002, TRANSFORM-2) <sup>2</sup> | Double-blind, active controlled | 223 | 4-week induction | MADRS change at 4 weeks |
|                                                                |                                 |     |                  |                         |
|                                                                |                                 |     |                  |                         |
|                                                                |                                 |     |                  |                         |

Fedgchin M, et al. Poster presented at: the 9th Biennial Conference of the International Society for Affective Disorders (ISAD); September 20-22, 2018; Houston, TX. 2. Popova V, et al. Poster presented at the 2018 Annual Meeting of the American Society of Clinical Psychopharmacology (ASCP); May 29-June 1, 2018; Miami FL. 3. Daly EJ, et al. Poster presented at the European College of Neuropsychopharmacology (ECNP) Congress; October 7, 2018; Barcelona, Spain.
 Wajs E, et al. Poster presented at the European College of Neuropsychopharmacology (ECNP) Congress; October 7, 2018; Barcelona, Spain.
 Wajs E, et al. Poster presented at the European College of Neuropsychopharmacology (ECNP) Congress; October 7, 2018; Barcelona, Spain. 5. Ochs-Ross R, et al. Poster presented at the 2018 Annual Meeting of the American Society of Clinical Psychopharmacology (ASCP); May 29-June 1, 2018; Miami FL.

#### Acute, flexible dose study (3002, TRANSFORM-2)



Popova V, Daly EJ, Trivedi M, et al. Randomized, double-blind study of flexibly-dosed intranasal esketamine plus oral antidepressant vs. active control in treatment-resistant depression. *Presented at: the 2018 Annual Meeting of the American Society of Clinical Psychopharmacology (ASCP); May 29-June 1, 2018; Miami, FL.* 

# Esketamine Phase 3 Clinical Development Program in Treatment-Resistant Depression (TRD)

| Study                                                          | Design                          | n   | Duration (wk)    | Main endpoints          |
|----------------------------------------------------------------|---------------------------------|-----|------------------|-------------------------|
| Acute, fixed dose study<br>(3001, TRANFORM-1) <sup>1</sup>     | Double-blind, active controlled | 346 | 4-week induction | MADRS change at 4 weeks |
| Acute, flexible dose study (3002, TRANSFORM-2) <sup>2</sup>    | Double-blind, active controlled | 223 | 4-week induction | MADRS change at 4 weeks |
| Elderly, acute, flexible<br>dose study (3005,<br>TRANSFORM-3)⁵ | Double-blind, active controlled | 138 | 4-week induction | MADRS change at 4 weeks |
|                                                                |                                 |     |                  |                         |
|                                                                |                                 |     |                  |                         |

Fedgchin M, et al. Poster presented at: the 9th Biennial Conference of the International Society for Affective Disorders (ISAD); September 20-22, 2018; Houston, TX. 2. Popova V, et al. Poster presented at the 2018 Annual Meeting of the American Society of Clinical Psychopharmacology (ASCP); May 29-June 1, 2018; Miami FL. 3. Daly EJ, et al. Poster presented at the European College of Neuropsychopharmacology (ECNP) Congress; October 7, 2018; Barcelona, Spain.
 Wajs E, et al. Poster presented at the European College of Neuropsychopharmacology (ECNP) Congress; October 7, 2018; Barcelona, Spain. 5. Ochs-Ross R, et al. Poster presented at the 2018 Annual Meeting of the American Society of Clinical Psychopharmacology (ASCP); May 29-June 1, 2018; Miami FL.

#### Elderly, acute, flexible dose study (3005, TRANSFORM-3)



Ochs-Ross R, et al. Poster presented at the 2018 Annual Meeting of the American Society of Clinical Psychopharmacology (ASCP); May 29-June 1, 2018; Miami FL.

# Esketamine Phase 3 Clinical Development Program in Treatment-Resistant Depression (TRD)

| Study                                                                      | Design                                                                                                                                       | n   | Duration (wk)                     | Main endpoints                                                                   |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------|----------------------------------------------------------------------------------|
| Acute, fixed dose study (3001, TRANFORM-1) <sup>1</sup>                    | Double-blind, active controlled                                                                                                              | 346 | 4-week induction                  | MADRS change at 4 weeks                                                          |
| Acute, flexible dose study (3002, TRANSFORM-2) <sup>2</sup>                | Double-blind, active controlled                                                                                                              | 223 | 4-week induction                  | MADRS change at 4 weeks                                                          |
| Elderly, acute, flexible dose study (3005, TRANSFORM-3) <sup>5</sup>       | Double-blind, active controlled                                                                                                              | 138 | 4-week induction                  | MADRS change at 4 weeks                                                          |
| Maintenance, relapse<br>prevention study (3003,<br>SUSTaIN 1) <sup>3</sup> | Open-label or double-blind<br>induction (4-wks) and<br>optimization (12-wks), followed<br>by double-blind, active-<br>controlled maintenance | 705 | Variable duration,<br>longer term | Time to relapse; relapse in<br>stable remitters; relapse in<br>stable responders |
|                                                                            |                                                                                                                                              |     |                                   |                                                                                  |

Fedgchin M, et al. Poster presented at: the 9th Biennial Conference of the International Society for Affective Disorders (ISAD); September 20-22, 2018; Houston, TX. 2. Popova V, et al. Poster presented at the 2018 Annual Meeting of the American Society of Clinical Psychopharmacology (ASCP); May 29-June 1, 2018; Miami FL. 3. Daly EJ, et al. Poster presented at the European College of Neuropsychopharmacology (ECNP) Congress; October 7, 2018; Barcelona, Spain.
 Wajs E, et al. Poster presented at the European College of Neuropsychopharmacology (ECNP) Congress; October 7, 2018; Barcelona, Spain.
 Wajs E, et al. Poster presented at the European College of Neuropsychopharmacology (ECNP) Congress; October 7, 2018; Barcelona, Spain. 5. Ochs-Ross R, et al. Poster presented at the 2018 Annual Meeting of the American Society of Clinical Psychopharmacology (ASCP); May 29-June 1, 2018; Miami FL.

#### Maintenance, relapse prevention study (3003, SUSTaIN 1)



Popova V, Daly EJ, Trivedi M, et al. Randomized, double-blind study of flexibly-dosed intranasal esketamine plus oral antidepressant vs. active control in treatment-resistant depression. *Presented at: the 2018 Annual Meeting of the American Society of Clinical Psychopharmacology (ASCP); May 29-June 1, 2018; Miami, FL.* 

#### Maintenance, relapse prevention study (3003, SUSTaIN 1)



Popova V, Daly EJ, Trivedi M, et al. Randomized, double-blind study of flexibly-dosed intranasal esketamine plus oral antidepressant vs. active control in treatment-resistant depression. *Presented at: the 2018 Annual Meeting of the American Society of Clinical Psychopharmacology (ASCP); May 29-June 1, 2018; Miami, FL.* 

# Esketamine Phase 3 Clinical Development Program in Treatment-Resistant Depression (TRD)

| Study                                                                      | Design                                                                                                                                   | n   | Duration (wk)                     | Main endpoints                                                                   |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------|----------------------------------------------------------------------------------|
| Acute, fixed dose study (3001, TRANFORM-1) <sup>1</sup>                    | Double-blind, active controlled                                                                                                          | 346 | 4-week induction                  | MADRS change at 4 weeks                                                          |
| Acute, flexible dose study (3002, TRANSFORM-2) <sup>2</sup>                | Double-blind, active controlled                                                                                                          | 223 | 4-week induction                  | MADRS change at 4 weeks                                                          |
| Elderly, acute, flexible dose<br>study (3005, TRANSFORM-3) <sup>5</sup>    | Double-blind, active controlled                                                                                                          | 138 | 4-week induction                  | MADRS change at 4 weeks                                                          |
| Maintenance, relapse<br>prevention study (3003,<br>SUSTaIN 1) <sup>3</sup> | Open-label or double-blind<br>induction (4-wks) and optimization<br>(12-wks), followed by double-blind,<br>active-controlled maintenance | 705 | Variable duration,<br>longer term | Time to relapse; relapse in stable<br>remitters; relapse in stable<br>responders |
| Maintenance, safety study<br>(3004, SUSTaIN 2) <sup>4</sup>                | Open-label                                                                                                                               | 802 | 52-weeks                          | Safety and tolerability                                                          |

Fedgchin M, et al. Poster presented at: the 9th Biennial Conference of the International Society for Affective Disorders (ISAD); September 20-22, 2018; Houston, TX. 2. Popova V, et al. Poster presented at the 2018 Annual Meeting of the American Society of Clinical Psychopharmacology (ASCP); May 29-June 1, 2018; Miami FL. 3. Daly EJ, et al. Poster presented at the European College of Neuropsychopharmacology (ECNP) Congress; October 7, 2018; Barcelona, Spain.
 Wajs E, et al. Poster presented at the European College of Neuropsychopharmacology (ECNP) Congress; October 7, 2018; Barcelona, Spain.
 Wajs E, et al. Poster presented at the European College of Neuropsychopharmacology (ECNP) Congress; October 7, 2018; Barcelona, Spain. 5. Ochs-Ross R, et al. Poster presented at the 2018 Annual Meeting of the American Society of Clinical Psychopharmacology (ASCP); May 29-June 1, 2018; Miami FL.

#### Maintenance, safety study (3004, SUSTaIN 2)



Wajs E, et al. Poster presented at the European College of Neuropsychopharmacology (ECNP) Congress; October 7, 2018; Barcelona, Spain.

### Spravato (Esketamine)

FDA Approved: March 5, 2019 SPRAVATO<sup>™</sup> is a non-competitive N-methyl Daspartate (NMDA) receptor antagonist indicated, <u>in a conjunction with an oral</u> <u>antidepressant</u>, for the treatment of treatment-resistant depression (TRD) in adults.

MAINTENANCE

Weeks 5-8

(once weekly)

56 mg or 84 mg once

weekly



**INDUCTION** 

Weeks 1-4

(twice weekly)

• Subsequent doses: 56 mg

• Day 1: 56 mg

or 84 mg

|                  | Spravato + AD<br>(N=346) | Placebo + AD<br>(N=222) |                    | Spravato + AD<br>(N=346) | Placebo + AD<br>(N=222) |
|------------------|--------------------------|-------------------------|--------------------|--------------------------|-------------------------|
| Dissociation     | 142 (41%)                | 21 (9%)                 | Diarrhea           | 23 (7%)                  | 13 (6%)                 |
| Dizziness        | 101 (29%)                | 17 (8%)                 | Throat Irritation  | 23 (7%)                  | 9 (4%)                  |
| Nausea           | 98 (28%)                 | 19 (9%)                 | Feeling Drunk      | 19 (5%)                  | 1 (0.5%)                |
| Sedation         | 79 (23%)                 | 21 (9%)                 | Dry Mouth          | 19 (5%)                  | 7 (3%)                  |
| Vertigo          | 78 (23%)                 | 6 (3%)                  | Hyperhidrosis      | 14 (4%)                  | 5 (2%)                  |
| Headache         | 70 (20%)                 | 38 (17%)                | Dysarthria         | 15 (4%)                  | 0 (0%)                  |
| Dysgeusia        | 66 (19%)                 | 30 (14%)                | Pollakiuria        | 11 (3%)                  | 1 (0.5%)                |
| Hypoesthesia     | 63 (18%)                 | 5 (2%)                  | Oropharyngeal Pain | 9 (3%)                   | 5 (2%)                  |
| Anxiety          | 45 (13%)                 | 14 (6%)                 | Mental Impairment  | 11 (3%)                  | 2 (1%)                  |
| Lethargy         | 37 (11%)                 | 12 (5%)                 | Tremor             | 12 (3%)                  | 2 (1%)                  |
| ↑Blood Pressure  | 36 (10%)                 | 6 (3%)                  | Euphoric Mood      | 15 (4%)                  | 2 (1%)                  |
| Vomiting         | 32 (9%)                  | 4 (2%)                  | Constipation       | 11 (3%)                  | 3 (1%)                  |
| Insomnia         | 29 (8%)                  | 16 (7%)                 | Feeling Abnormal   | 12 (3%)                  | 0 (0%)                  |
| Nasal Discomfort | 23 (7%)                  | 11 (5%)                 | Tachycardia        | 6 (2%)                   | 1 (0.5%)                |

SPRAVATO<sup>™</sup> [prescribing information]. Titusville, NJ: Janssen Pharmaceuticals, Inc.

#### Warnings & Precautions

- Sedation
- Dissociation
- Abuse and Misuse
- SPRAVATO Risk Evaluation and Mitigation Strategy (REMS)
- Suicidal Thoughts and Behaviors in Adolescents and Young Adults
- Increase in Blood Pressure
- Cognitive Impairment
- Impaired Ability to Drive and Operate Machinery
- Ulcerative or Interstitial Cystitis
- Embryo-fetal Toxicity

#### Ketamine and Suicidal Ideation



Wilkinson S, et al. AM J Psychiatry 2018; 175 (2): 150-158.

#### Ketamine and NMDA Receptor



Neill J et al. European Neuropsychopharmacology. 2014;24(5):822-835.

#### Suggested Mechanism of Action



Duman RS. Ketamine and rapid-acting antidepressants: a new era in the battle against depression and suicide [version 1; peer review: 3 approved]. *F1000Research* 2018, **7**(F1000 Faculty Rev):659 (https://doi.org/10.12688/f1000research.14344.1)

#### Thank You



### Brain Health Consultants and TMS Center

"Forward Thinking, Evidence Based"