



# Fetal Origins of Autism Spectrum Disorders Fetal Neuro-programming

Hind Moussa, M.D., FACOG





No relevant conflicts of interest to report







### **Autism Spectrum Disorders (ASD)**

- Difficulties:
  - Social interaction
  - Verbal and nonverbal communication
  - Repetitive behaviors
- USA-ASD prevalence 1-2%
- ASD affects 1 in 59 children
- 4x more common in boys





**Prevalence in Lebanon** 

# BACKGROUND



J Autism Dev Disord (2016) 46:514–522 DOI 10.1007/s10803-015-2590-7

ORIGINAL PAPER

### **Prevalence of Autism Spectrum Disorder in Nurseries** in Lebanon: A Cross Sectional Study

Monique Chaaya<sup>1</sup> · Dahlia Saab<sup>2</sup> · Fadi T. Maalouf<sup>3</sup> · Rose-Mary Boustany<sup>2,4</sup>

|               | Prevalence ASD, according to<br>M-CHAT N (%) | Prevalence ASD<br>corrected (M-CHAT<br>prevalence*0.058) % | Prevalence<br>ASD (95 % CI) |
|---------------|----------------------------------------------|------------------------------------------------------------|-----------------------------|
| Total         | 263 (26.4)                                   | 1.53                                                       | 0.77-2.29                   |
| Gender        |                                              |                                                            |                             |
| Male          | 144 (26.8)                                   | 1.55                                                       | 0.51-2.59                   |
| Female        | 118 (25.7)                                   | 1.49                                                       | 0.38-2.60                   |
| Governorate   |                                              |                                                            |                             |
| Beirut        | 66 (30.4)                                    | 1.76                                                       | 0.01-3.51                   |
| Mount Lebanon | 197 (25.2)                                   | 1.46                                                       | 0.62-2.30                   |



- Early human brain development
  - Sequence of intricate processes
  - Functionally operative neural circuits

### Developmental trajectories of early brain network formation

- Genetically programmed
- Epigenetic influences
- Environmental influences





# NEURODEVELOPMENT





# **W**

### GW4-6

- GW5 nascent cerebral hemispheres can be seen
- Symmetric cell division of neuroepithelial stem cells, which become ventricular radial glia cells

### GW 6-10

- GW6 neurogenesis of first wave destined for cortical plate
- GW7-10 neurogenesis and neuronal migration to cortical plate
- Neural progenitor cells = radial glia in VZ
- Asymmetric cell division: separating proliferating cells from postmitotic neurons

Dividing cells generate pairs of daughter cells

- with the same symmetric cell fate (Two progenitor cells)
- with distinct, asymmetric cell fates (one progenitor and one neuron)



# Neuronal Migration





# **Neuronal Migration**



### Migration

Nat Rev Neurosci. 2009 10(10):724-35.



# **Functional Neurodevelopment**







# **Intrauterine Environment**



- **1.** Fetal Factors
- **2.** Placental Factors

- **1.** The Passenger
- 2. The Placenta

3. The Parent

**3.** Maternal Factors



# **Congenital Heart Disease**









# Fetal Brain Oxygenation and Perfusion in Congenital Heart Disease:

**Impact on Neurodevelopment** 







### Fetal Brain Oxygenation and Perfusion in CHD Neurodevelopmental Sequelae of CHD Why does it happen?







### Preop injury and postop brain development in TGA/SV

- Brain injury less in those with prenatal dx (24 vs 48%)
- More rapid brain development postop in those with a prenatal diagnosis

Table 3. Prevalence of Preoperative Brain Injury by Cardiac Diagnosis and Postnatal vs Prenatal Diagnosis of Critical Congenital Heart Disease

| Drooporativo Pre        | No. With Injury/Total No. With Cardiac Diagnosis (% |                                        | Vith Cardiac Diagnosis (%) |                      |
|-------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|----------------------|
| and Cardiac Diagnosis   |                                                     | Postnatal Diagnosis Prenatal Diagnosis |                            | P Value <sup>a</sup> |
| Any injury <sup>6</sup> |                                                     |                                        |                            |                      |
| All patients            |                                                     | 41/86 (48)                             | 16/67 (24)                 | .003                 |
| TGA                     |                                                     | 31/68 (46)                             | 6/28 (21)                  | .03                  |
| SVP                     |                                                     | 10/18 (56)                             | 10/39 (26)                 | .03                  |
| SVP with aort           | ic arch obstruction                                 | 9/17 (53)                              | 7/31 (23)                  | .02                  |
| White matter inj        | ury                                                 |                                        |                            |                      |
| TGA                     |                                                     | 17/68 (25)                             | 3/28 (11)                  | .09                  |
| SVP                     |                                                     |                                        |                            | .06                  |
| Stroke                  | Prenata                                             | l diagnosis, d                         | elivery                    |                      |
| TGA                     |                                                     |                                        |                            | .09                  |
| SVP                     | roor                                                | n care, and fe                         |                            | .61                  |
| Hypoxic-ische           | treatm                                              | ent to impro                           | ve 02                      |                      |
| TGA                     | ci cu cu                                            |                                        |                            | .71                  |
| SVP                     |                                                     | delivery                               |                            | .32                  |
|                         |                                                     | -                                      |                            |                      |



Patients, %

Patients, %



Peyvandi, JAMA Pediatrics 2016





- **1.** Fetal Factors
- **2.** Placental Factors

2. The Placenta

3. The Parent

**1.** The Passenger

**3.** Maternal Factors





### The Growth Restriction Intervention Trial (GRIT)

A randomised trial of timed delivery for the compromised preterm fetus: short term outcomes and Bayesian interpretation

The GRIT Study Group\*

### Infant wellbeing at 2 years of age in the Growth Restriction Intervention Trial (GRIT): multicentred randomised controlled trial

The GRIT study group\*

Research

www.AJOG.org

**OBSTETRICS** 

### The Growth Restriction Intervention Trial: long-term outcomes in a randomized trial of timing of delivery in fetal growth restriction

Dawn-Marie Walker, PhD; Neil Marlow, DMFMedSci; Lisa Upstone, DClinPsy; Harriet Gross, PhD; Janet Hornbuckle, MD, MB, MRCOG; Andy Vail, MSc; Dieter Wolke, PhD; Jim G. Thornton, MD, FRCOG

GRIT study group, 2003, 2004, 2010





# GRIT Studies, 2003, 2004, 2010



Identical Long-term outcomes





# Trial Of Randomized Umbilical And Fetal Flow In Europe (Truffle)

Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE)

C. LEES<sup>1</sup>, N. MARLOW<sup>2</sup>, B. ARABIN<sup>3</sup>, C. M. BILARDO<sup>4</sup>, C. BREZINKA<sup>5</sup>, J. B. DERKS<sup>6</sup>, J. DUVEKOT<sup>7</sup>, T. FRUSCA<sup>8</sup>, A. DIEMERT<sup>9</sup>, E. FERRAZZI<sup>10</sup>, W. GANZEVOORT<sup>11</sup>, K. HECHER<sup>9</sup>, P. MARTINELLI<sup>12</sup>, E. OSTERMAYER<sup>13</sup>, A. T. PAPAGEORGHIOU<sup>14</sup>, D. SCHLEMBACH<sup>15</sup>, K. T. M. SCHNEIDER<sup>13</sup>, B. THILAGANATHAN<sup>14</sup>, T. TODROS<sup>16</sup>, A. VAN WASSENAER-LEEMHUIS<sup>17</sup>, A. VALCAMONICO<sup>8</sup>, G. H. A. VISSER<sup>18</sup> and H. WOLF<sup>11</sup>, on behalf of the TRUFFLE Group#

# 2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): a randomised trial

Christoph C Lees, Neil Marlow, Aleid van Wassenaer-Leemhuis, Birgit Arabin, Caterina M Bilardo, Christoph Brezinka, Sandra Calvert, Jan B Derks, Anke Diemert, Johannes J Duvekot, Enrico Ferrazzi, Tiziana Frusca, Wessel Ganzevoort, Kurt Hecher, Pasquale Martinelli, Eva Ostermayer, Aris T Papageorghiou, Dietmar Schlembach, K T M Schneider, Baskaran Thilaganathan, Tullia Todros, Adriana Valcamonico, Gerard H A Visser, Hans Wolf, for the TRUFFLE study group\*





# Trial Of Randomized Umbilical And Fetal Flow In Europe (Truffle)



A conservative approach to timing delivery in waiting for late Ductus Venosus changes, unless severe CTG changes occur first, was associated with a more favorable 2 year outcome in early onset fetal growth restriction





**1.** Fetal Factors

**1.** The Passenger

**2.** Placental Factors

2. The Placenta

3. The Parent

**3.** Maternal Factors



# Maternal Factors



| Maternal Conditions                                              | OR     | Confidence Interval | Study                                                                                                              | Reference                                                          |
|------------------------------------------------------------------|--------|---------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Obesity (BMI≥ 30)                                                | 3.2 ** | 1.10-2.56           | CHARGE Population Study                                                                                            | Pediatrics. 2012;129:e1121–e1128.                                  |
| Pre-Eclampsia                                                    | 1.5**  | 1.18-4.68           | CHARGE Population Study                                                                                            | JAMA Pediatr. 2014 Dec 8.                                          |
| Severe Pre-Eclampsia with<br>Placental Insufficiency             | 3.39   | 1.06-3.50           | CHARGE Population Study                                                                                            | JAMA Pediatr. 2014 Dec 8.                                          |
| Maternal thyroid peroxidase<br>antibody positivity (TPO-<br>Ab+) | 2.6    | 1.16–2.75           | Nested case-control design of the<br>Finnish Prenatal Study of Autism (FiPS-A)                                     | Prog Neuropsychopharmacol Biol<br>Psychiatry. 2015 Mar 3;57:86-92. |
| Rheumatoid Arthritis                                             | 2.36   | 1.07–2.54           | The study cohort consisted of all of the<br>children born in Denmark from 1993<br>through 2004 (689 196 children). | Pediatrics 124: 687–694                                            |
| Celiac Disease                                                   | 2.12   | 1.27–5.75           | The study cohort consisted of all of the<br>children born in Denmark from 1993<br>through 2004 (689 196 children). | Pediatrics 124: 687–694                                            |
| Type I Diabetes                                                  | 1.86   | 1.07–3.77           | The study cohort consisted of all of the<br>children born in Denmark from 1993<br>through 2004 (689 196 children). | Pediatrics 124: 687–694                                            |
| Febrile Episode                                                  | 1.84   | 1.1-2               | Danish Cohort                                                                                                      | Pediatrics. 2012 Dec;130(6):e1447-<br>54.                          |





Journal of Autism and Developmental Disorders (2018) 48:2010–2021 https://doi.org/10.1007/s10803-017-3449-x

**ORIGINAL PAPER** 

# Association of Autism with Maternal Infections, Perinatal and Other Risk Factors: A Case-Control Study

Dikran Richard Guisso<sup>1</sup> · Fadi S. Saadeh<sup>1</sup> · Dahlia Saab<sup>2</sup> · Joud El Deek<sup>1</sup> · Sarah Chamseddine<sup>1</sup> · Hadi Abou El Hassan<sup>1</sup> · Ghidaa Majari<sup>1</sup> · Rose-Mary Boustany<sup>2,3</sup>





# Parental Inheritance of Endothelial Nitric Oxide Synthase (eNOS) Gene and Abnormal Uterine Environment Contribute to Autism Spectrum Disorders in a Hypertensive Murine Model

Hind Moussa, Baha Sibai, Sean Blackwell, Mateo Leon, John Redell, Yin Liu, Pramod Dash, Monica Longo

**Division of Maternal Fetal Medicine** 

Department of Obstetrics, Gynecology and Reproductive Sciences UT Health- University of Texas Medical School at Houston





PHENOTYPE





# Mice Offspring Developing in an Abnormal Uterine Environment, Secondary to Maternal Hypertension, Will Have an ASD-Like Phenotype





# **1.** To evaluate the contribution of maternal hypertension to ASD-like phenotype

2. To identify novel ASD related genes and their biological processes in the cerebellum



# Endothelial Nitric Oxide Synthase (eNOS) Hypertension Mouse Model





# Fetal Programming Animal Model



# **Cross Breeding Scheme**

Knock Out eNOS-/-Hypertensive Mother Wild Type eNOS+/+



### Heterozygous Mat-eNOS-/+



# Fetal Programming Animal Model

# **Cross Breeding Scheme**



Knock Out eNOS-/-Hypertensive Mother Wild Type eNOS+/+



### Heterozygous Mat-eNOS-/+





**Cross Breeding Scheme** Knock Out eNOS-/-Wild Type eNOS+/+ **Normotensive Mother** 

> Heterozygous Pat-eNOS-/+





Pat-eNOS-/+





Developed in an Abnormal Uterine Environment

**Hypertensive Mother** 

Developed in a Normal Uterine Environment

**Normotensive Mother** 







Developed in an Abnormal Uterine Environment

**Hypertensive Mother** 

Developed in a Normal Uterine Environment

**Normotensive Mother** 







# **Behavioral Phenotype Characterization**



| Ā  |   |
|----|---|
| 11 | L |

| Social Behavior                                          | Repetitive Behavior              |
|----------------------------------------------------------|----------------------------------|
| - Sociability<br>- Preference For Social<br>Novelty      | - Open Field<br>- Marble Burying |
| Anxiety Behavior                                         | Motor Function                   |
| - Light/Dark Box<br>- Elevated Plus Maze<br>- Open Field | - Beam Balance<br>- Rotor Rod    |
| Spatial Learning and Mem                                 | ory                              |
| - Morris Water Maze                                      |                                  |











### ASD Behavioral Tests Preference for Social Novelty







### Morris Water Maze Spatial Learning and Memory







### Morris Water Maze Spatial Learning and Memory









|                                |                            | Wild-Type         | Pat- <u>eNOS</u> -/+ | Mat-Enos-/+       |
|--------------------------------|----------------------------|-------------------|----------------------|-------------------|
| Social Behavior                | Preference For<br>Novelty  | $\leftrightarrow$ | $\leftrightarrow$    | Ļ                 |
| Repetitive Behavior            | Open Field                 | $\leftrightarrow$ | Ļ                    | Ļ                 |
| Anxiety Behavior               | Light Dark Box             | $\leftrightarrow$ | Ļ                    |                   |
| Spatial Learning<br>And Memory | Morris Water<br>Maze       |                   | ₽₽                   | Ļ                 |
| Motor Function                 | Beam Balance/<br>Rotor Rod | $\leftrightarrow$ | $\leftrightarrow$    | $\leftrightarrow$ |





|                                |                            | Wild-Type         | Pat-eNOS-/+       | Mat-Enos-/+       |
|--------------------------------|----------------------------|-------------------|-------------------|-------------------|
| Social Behavior                | Preference For<br>Novelty  | $\leftrightarrow$ | $\leftrightarrow$ | Ļ                 |
| Repetitive Behavior            | Open Field                 | $\leftrightarrow$ | Ļ                 | <b>I</b>          |
| Anxiety Behavior               | Light Dark Box             | $\leftrightarrow$ | Ļ                 | <b>.</b>          |
| Spatial Learning<br>And Memory | Morris Water<br>Maze       |                   | ₽₽                | Ļ                 |
| Motor Function                 | Beam Balance/<br>Rotor Rod | $\leftrightarrow$ | $\leftrightarrow$ | $\leftrightarrow$ |





|                                |                            | Wild-Type         | Pat- <u>eNOS</u> -/+ | Mat- <u>Enos</u> -/+ |
|--------------------------------|----------------------------|-------------------|----------------------|----------------------|
| Social Behavior                | Preference For<br>Novelty  | $\leftrightarrow$ | $\leftrightarrow$    | Ļ                    |
| Repetitive Behavior            | Open Field                 | $\leftrightarrow$ | Ļ                    | . ↓                  |
| Anxiety Behavior               | Light Dark Box             | $\leftrightarrow$ | Ļ                    | <b>.</b>             |
| Spatial Learning<br>And Memory | Morris Water<br>Maze       |                   | ₽₽                   | Ļ                    |
| Motor Function                 | Beam Balance/<br>Rotor Rod | $\leftrightarrow$ | $\leftrightarrow$    | $\leftrightarrow$    |





# Identification of ASD Related Genes in the Cerebellum





### Highly conserved structure and function

Foliation conserved across evolution

# Structure is "simple"

- Only 9 principle types of neurons
- All morphologically distinct
- Layers and circuitry are stereotyped

# Contains more neurons than rest of brain

- In mouse, 59/71 million neurons (83%)
- In human, 69/86 billion neurons (80%)





### Incidence

- Relatively common ~1/5000 live births
- Can occur in isolation or part of syndrome
- Genes identified for only a few rare forms

# Outcome

- Most cause DEV delay ± ID ± motor abnormalities
- ID and ID syndromes, autism, early life epilepsy

# Prenatal Issues

- Most (not all) are visible by GW20
- Difficult to distinguish by fetal ultrasound/MRI





# • Historically

- Balance
- Posture
- Motor control

### • Recent

- External sensory
- Neocortical circuit refinement

# Shaping Higher Function Early In Neurodevelopment







# **Identification of ASD Related Genes**

- RNAs from Mat-eNOS-/+ and Pat-eNOS-/+ cerebella underwent whole transcriptome shotgun sequencing using RNA-Seq
- Differentially expressed genes were examined for pathway analyses to obtain novel ASD related genes
- Gene Ontology enrichment was performed on these novel genes to identify their biologic processes













### **Gene Ontology Term**

Embryo Development Anatomical Structure Development Cell Differentiation Signal Transduction Autophagy Carbohydrate Metabolic Process Catabolic Process





### CONCLUSION

- The altered uterine environment, secondary to maternal hypertension, contributes to ASD like features in eNOS heterozygous offspring
- A social deficit, the hallmark of ASD, is differentially present in the offspring of hypertensive mothers
- Novel ASD related genes are differentially expressed between both groups
- ASD etiology has a cerebellar component





# Effect of Programmed Maternal Hypertension and Metabolic-like Syndrome during Pregnancy on Offspring Neurodevelopment

F. Lu, A. E. Ontiveros, H. Moussa, M. Saade, S.C. Blackwell, P. Dash and M. Longo

Department of Obstetrics, Gynecology and Reproductive Sciences UTHealth-McGovern Medical School at Houston











### **Second Generation Wild Type Offspring**

| Group 1, CTR                |                      | Group 2, HTN      | Group 3, MLS                          |
|-----------------------------|----------------------|-------------------|---------------------------------------|
| Social                      | Social<br>Preference |                   |                                       |
| Behavior                    | Social Novelty       |                   |                                       |
| Anxiety                     |                      | $\Leftrightarrow$ |                                       |
| Motor Function              |                      | $\Leftrightarrow$ | $\leftrightarrow$                     |
| Spatial Learning and Memory |                      |                   | $\overset{\bigstar}{\longrightarrow}$ |





62: Effect of programmed maternal hypertension and metabolic-like syndrome during pregnancy in offspring neuro-development

Fangxian Lu, Alejandra E. Ontiveros, Hind N. Moussa, Mia M. Saade, Sean C. Blackwell, Pramod Dash, Monica Longo **Figure 2: Social Interaction Tasks (Social Preference and Social Novelty)** Three groups of WT offspring were studied: born to heterozygous eNOS-KO<sup>+/-</sup> females fed a high fat diet (HFD) manifesting MLS (Group 1), born to heterozygous eNOS-KO<sup>+/-</sup> females fed a control diet (CD) manifesting HTN (Group 2), and born to WT female fed control diet (CD) use as control (Group 3).





American Journal of Obstetrics & Gynecology 2016 214, S44-S45DOI: (10.1016/j.ajog.2015.10.080)





478: Parental inheritance of NOS3 and uterine environment alter cytokine levels in a murine model of autism like disorder

Hind Moussa, Baha Sibai, Sean Blackwell, Mateo Leon, Anthony Moore, Alissa R. Carver, Maged Costantine, Pramod Dash, Monica Longo

- Blood and brain were collected from KO, KOM, KOP and WT offspring
- N=7-10/group at 12 wks.
- Bio-Plex Mouse Cytokine Assay was run on
  - Serum
  - Cerebellum
  - Hippocampus
- 1-way-ANOVA and *t*-test were used for statistical analysis.

Pro-Inflammatory Cytokines

IL-1β, IL-6, IL-17A TNF-α, IFN y

Anti-Inflammatory Cytokines

IL-10





# 851: Maternal metabolic syndrome and hypertension altered TNF $\alpha$ and mTOR1 activity in the cerebellum of adult offspring: implications for autism-spectrum disorder

Fangxian Lu, Anthony N. Moore, Danielle Hamrick, Jerrie S. Refuerzo, Baha M. Sibai, Sean C. Blackwell, Pramod Dash, Monica Longo

American Journal of Obstetrics & Gynecology Volume 216, Issue 1, Pages S487-S488 (January 2017) DOI: 10.1016/j.ajog.2016.11.760







# 226: Genes or environment? A novel double knockout mouse model for fetal origins of autism study

Hind N. Moussa, Baha M. Sibai, Sean C. Blackwell, David A. Fournie, Alejandra E. Ontiveros, Fangxian Lu, John Redell, Pramod Dash, Monica Longo

Figure 1: Breeding scheme to obtain offspring with and without TSC2 genetic risk born to hypertensive vs. normotensive mothers.





American Journal of Obstetrics & Gynecology 2016 214, DOI: (10.1016/j.ajog.2015.10.264)





# 226: Genes or environment? A novel double knockout mouse model for fetal origins of autism study

Hind N. Moussa, Baha M. Sibai, Sean C. Blackwell, David A. Fournie, Alejandra E. Ontiveros, Fangxian Lu, John Redell, Pramod Dash, Monica Longo

- Offspring with and without genetic (TSC2) and environmental risk (HTN) factors performed similarly in behavioral tasks assessing motor function, spatial learning, memory, and anxiety
- Significant interaction between the genetic & environmental risk factors in a social behavior task (P=0.048)
- After adjusting for gender, there was a social deficit in males as compared to females, and that deficit was driven by the HTN environmental factor and not the TSC2 genetic risk (Sociability task, male gender P=0.014, eNOS<sup>+/-</sup> P=0.013, and TSC2<sup>+/-</sup> P=0.135, interaction of male gender X environmental factor P=0.009)











### <u>UTHSC</u>

OB/Gyn Monica Longo Sean Blackwell Baha Sibai Mateo Leon Neuroscience: Pramod Dash John Redell Michael Hylin Computational Biology Yin Liu



### <u>UTMB</u>

Georges Saade Maged Costantine Esther Tamayo

### FROM THE UNIVERSITY OF TEXAS HEALTH SCIENCE CENTER AT HOUSTON, HOUSTON, TX AND THE DEPARTMENT OF OBSTETRICS AND GYNECOLOGY AT UNIVERSITY OF TEXAS MEDICAL BRANCH, GALVESTON, TX.





### Acknowledgements

